	Q.P. Code: 20EC0451						R20				
	Reg. No:]			
	SIDDHARTI	H INSTITUTE	OF ENGI	NEERIN	IG & '	ГЕСН	INOL	OGY::	PUTTU	R	
	D.T.			NOMOU	,				202		
		h III Year I Sei		-)23		
	1	INTRODUCTIO		Elective		ION	SYST	EMS			
	Time: 3 hours								Max. N	Aarks: (50
		(Answ	er all Five	Units 5 x UNIT-I	x 12 =	60 M	arks)				
1	a Determine the mode of AM.	ulation index of	AM, Perce	ntage Mo	odulati	ion an	d Ban	dwidth	CO3	L3	6M
	b A modulating signal $\cos (2\pi \times 104t)$. frequency of sideba	Compute the m	nodulation	index, 9	% of :				CO3	L2	6M
2	a Examine the various	s applications of	SSB-SC.	on					CO3	L3	6M
	b Explain single tone	e modulation fo		ing only	lowe	er side	e band	d(LSB)	CO3	L2	6M
	frequency of SSB m	nodulation.			1						
•	D' 1			UNIT-II	1		1		CO		
3	a Discuss about transib A 20 MHz carrier i					-		hat the	CO2 CO3	L2 L3	6M 6M
	peak frequency dev approximate bandw signal is: (i) 1kHz (i	viation is 100 kH width of the FM	Iz. Determ	ne the n	nodula	tion in	ndex a	and the	COS	LS	UIVI
4	a Describe the function	onality of each b	lock of pha		liscrim	ninato	r.		CO2	L2	6M
	b Explain briefly about		tion with n		wave			-	CO2	L2	6M
5	a Calculate the input noise ratio of 16 dB	and a noise figu	re of 5.4 d	B.		an ou	tput si	gnal to	CO1	L4	6M
	b Explain Pulse Ampl			OR					CO3	L2	6M
6	a Explain the processb Describe the demod	-			ve.				CO3 CO3	L2 L1	6M
7				JNIT-IV		liagra	m of	Digital			6M
/	a Define Digital Con communication syst		i draw the	Dasic C	NOCK C	nagra	III OI	Digital	CO4	L1	6M
	b Explain the function		of Digital co	ommunic OR	cation	syster	n.		CO1	L2	6M
8	a Draw the block diag	gram of BPSK m	odulator a	nd explai	in the o	operat	ion.		CO6	L2	6M
	b Discuss in brief abo	ut BPSK cohere		lator usi U NIT-V	1	eat blo	ock dia	agram.	CO6	L2	6 M
9	a Discuss briefly about		of Mobile 1	adio con	nmunio	cation			CO6	L2	6M
	b Explain paging syst	ems.		OD					CO6	L2	6M
10	a Explain the multiple	e access scheme	s for wideh	OR and syste	eme				CO6	L2	6M
10	b Discuss about frequ		plexing in		comm	nunica	tion.		CO6	L2 L2	6M

	Pa	age	1	of	1
--	----	-----	---	----	---

	(J-series)	
	a Deletymic de modulation index of AM. Porcentage Modulation and Bandwidth	
	or ever b A modulation signal 5 tos (3n × 1031) is used to modulate a carrier signal 10.	
	cos (2 r M42) Compute the modulation index. % of modulation index.	
	71-11/10	